GammaPatria | Shapiro, S., 2000, bersikeras bahwa, logika adalah cabang kedua matematika dan cabang filsafat; bahasa formal, sistem deduktif, dan model-teori semantik adalah objek matematika dan, dengan demikian, ahli logika yang tertarik pada mereka matematika sifat dan hubungan. Menurut Shapiro, logika adalah studi tentang penalaran yang benar, dan penalaran merupakan kegiatan, epistemis mental, dan karena itu menimbulkan pertanyaan mengenai relevansi filosofis aspek matematis dari logika; bagaimana deducibility dan validitas, sebagai properti bahasa formal, berhubungan dengan penalaran yang benar, apa hasil matematika dilaporkan di bawah ini ada hubungannya dengan masalah filosofis asli. Beberapa filsuf menyatakan bahwa kalimat deklaratif bahasa alam telah mendasari bentuk logis dan bahwa bentuk-bentuk yang ditampilkan oleh formula bahasa formal. WVO Quine menyatakan bahwa bahasa alam harus teratur, dibersihkan untuk pekerjaan ilmiah dan metafisik yang serius, salah sesuatu yg diinginkan perusahaan adalah bahwa struktur logis dalam bahasa diperintah harus transparan. Oleh karena itu, bahasa formal adalah model matematika dari bahasa alami, sebuah bahasa formal menampilkan fitur tertentu dari bahasa alam, atau idealisasi dari padanya, sementara mengabaikan atau menyederhanakan fitur lainnya. Shapiro menyatakan bahwa tujuan dari model matematika adalah untuk menjelaskan apa yang mereka model, tanpa mengklaim bahwa model tersebut akurat dalam semua hal atau bahwa model harus mengganti apa itu model.
Kemerling, G. 2002, menjelaskan bahwa titik puncak dari pendekatan baru untuk logika terletak pada kapasitasnya untuk menerangi sifat penalaran matematika, sedangkan kaum idealis berusaha untuk mengungkapkan hubungan internal dari realitas absolut dan pragmatis
ditawarkan untuk memperhitungkan manusia Permintaan sebagai pola longgar investigasi, ahli logika baru berharap untuk menunjukkan bahwa hubungan paling signifikan antara dapat dipahami sebagai murni formal dan eksternal. Kemerling mencatat bahwa matematikawan seperti Richard Dedekind menyadari bahwa atas dasar ini dimungkinkan untuk membangun matematika tegas dengan alasan logis, sedangkan Giuseppe Peano telah menunjukkan pada 1889 bahwa semua aritmatika dapat dikurangi ke sistem aksiomatis dengan hati-hati dibatasi himpunan awal mendalilkan . Pada sisi lain, Frege segera berusaha untuk mengekspresikan mendalilkan dalam notasi simbolik temuannya sendiri, dan dengan 1913, Russell dan Whitehead telah menyelesaikanmonumental Principia Mathematica (1913), dengan tiga volume besar untuk bergerak dari sebuah aksioma logis saja melalui definisi nomor bukti bahwa "1 + 1 = 2." Kemerling menyatakan bahwa meskipun karya Gödel dibuat menghapus keterbatasan dari pendekatan ini, signifikansi bagi pemahaman kita tentang logika dan matematika tetap undimmed.
Pietroski, P., 2002, bersikeras yang menarik bagi bentuk logis muncul dalam konteks upaya untuk mengatakan lebih banyak tentang perbedaan antara kesimpulan intuitif sempurna, yang mengundang metafora keamanan dan kedekatan, dan kesimpulan yang melibatkan risiko tergelincir dari kebenaran kepalsuan . Dia menyatakan bahwa pemikiran kuno adalah bahwa kesimpulan tanpa cela menunjukkan pola yang dapat dicirikan oleh skema abstrak dari isi tertentu dari tempat tertentu dan kesimpulan, dengan demikian mengungkapkan bentuk umum bersama banyak kesimpulan sempurna lainnya; bentuk seperti, bersama dengan kesimpulan bahwa contoh mereka, dikatakan valid. Pietroski diuraikan kesimpulan Stoik mencerminkan bentuk abstrak: jika pertama kemudian yang kedua, dan yang pertama, maka yang kedua. Oleh karena itu, Stoik dirumuskan yaitu skemata lain yang valid. Jika pertama kemudian yang kedua, tetapi tidak yang kedua, jadi bukan yang pertama; Entah pertama atau kedua, tetapi tidak yang kedua, jadi yang pertama, dan tidak baik yang pertama dan kedua, tapi yang pertama, sehingga tidak yang kedua .
Pietroski, P., 2002, menyatakan bahwa formulasi skema logis memerlukan variabel dalam proposisi; proposisi adalah istilah seni untuk apapun variabel di atas direpresentasikan dalam berbagai berani lebih dan dengan demikian merupakan hal-hal yang bisa benar atau salah, sebab mereka adalah tempat potensial / yaitu kesimpulan. hal yang bisa mencari dalam kesimpulan yang valid. Dia mengatakan bahwa kesimpulan dapat menjadi proses mental dimana pemikir menarik kesimpulan dari beberapa tempat, atau proposisi pemikir akan menerima mungkin sementara atau hipotetis jika dia menerima lokasi dan kesimpulan, dengan satu proposisi ditunjuk sebagai konsekuensi dugaan orang lain. Dia mencatat bahwa tidak jelas bahwa semua kesimpulan sempurna adalah contoh dari beberapa bentuk yang valid, dan dengan demikian kesimpulan yang impeccability adalah karena bentuk proposisi-proposisi yang relevan, tetapi pikiran ini menjabat sebagai ideal untuk studi inferensi, himpunanidaknya sejak pengobatan Aristoteles tentang contoh seperti. Menurut dia, Aristoteles membahas berbagai kesimpulan tertentu, yang disebut silogisme, yaitu melibatkan quantificational proposisi. ditunjukkan dengan kata-kata seperti "setiap 'dan' beberapa”.
'.
Pietroski, P., 2002, menggunakan terminologi yang sedikit berbeda bahwa teoretikus lain memperlakukan semua elemen umum sebagai predikat, dan proposisi dengan struktur tertentu dan dikatakan memiliki bentuk kategoris sebagai berikut: subyek-kata kerja penghubung-predikat, dimana sebuah kata kerja penghubung, ditunjukkan dengan kata-kata seperti 'adalah' atau 'adalah', link subjek yang terdiri dari pembilang dan predikat untuk predikat, tetapi dengan merumuskan berbagai schemata inferensi Aristotelian, dengan analisis proposisi kompleks, infererences sempurna banyak yang terungkap sebagai kasus bentuk silogisme valid. Pietroski menyatakan bahwa para ahli logika abad pertengahan membahas hubungan logika untuk tata bahasa, ia membedakan bahwa bahasa yang diucapkan harus menutupi aspek-aspek tertentu dari struktur logis dan memiliki struktur; mereka terdiri, dengan cara yang sistematis, dari kata-kata; dan asumsi adalah bahwa kalimat mencerminkan aspek utama bentuk logis, termasuk subjek-predikat struktur. Dia mengakui bahwa menjelang akhir abad kedelapan belas, Kant bisa mengatakan tanpa berlebihan bahwa banyak logika mengikuti jalur tunggal sejak awal, dan bahwa sejak Aristoteles itu tidak harus menelusuri kembali satu langkah. Menurut dia, Kant mengatakan bahwa logika silogisme adalah untuk semua tampilan lengkap dan sempurna.
Hanya ada tiga istilah dalam silogisme, karena kedua istilah dalam kesimpulan sudah dalam premisnya, dan satu istilah umum bagi kedua premisnya. Ini mengarah pada definisi berikut: predikat dalam kesimpulan disebut suku utama, subjek dalam kesimpulan disebut suku kecil; istilah umum disebut term tengah, sedangkan premis yang mengandung istilah utama disebut premis utama; dan premis yang mengandung istilah minor disebut premis minor. Silogisme selalu ditulis premis mayor, premis minor, kesimpulan, melainkan terbatas pada argumen silogisme, dan tidak bisa menjelaskan kesimpulan umum yang melibatkan beberapa argumen. Hubungan dan identitas harus diperlakukan sebagai hubungan subjek-predikat, yang membuat pernyataan identitas matematika sulit untuk ditangani, dan tentu saja istilah tunggal dan proposisi tunggal.
Pietroski, P., 2002, menjelaskan bahwa dengan demikian, orang mungkin menduga bahwa ada relatif sedikit disimpulkan pola dasar, beberapa kesimpulan bisa mencerminkan transisi inheren menarik dalam pikiran; jelas bahwa para ahli logika berhak untuk mengambil aturan inferensi dari B 'jika A , dan A, maka B 'sebagai sesuatu yang aksiomatis, dan namun, berapa banyak aturan yang masuk akal dianggap sebagai fundamental dalam pengertian ini? Dia berpendapat bahwa keanggunan teoritis dan teori-teori yang mendukung penjelasan mendalam dengan asumsi tereduksi sedikit, dan geometri Euclid telah lama menyediakan model untuk bagaimana menyajikan obyek pengetahuan sebagai jaringan proposisi yang mengikuti dari aksioma dasar beberapa, dan untuk beberapa alasan, dasar pertanyaan memainkan peran penting dalam logika abad kesembilan belas dan matematika. Pietroski mengambil karya Boole dan lain-lain untuk menunjukkan bahwa kemajuan dalam hal ini adalah mungkin sehubungan dengan kesimpulan logika yang melibatkan variabel proposisional; namun silogisme tetap tidak dapat disatukan dan tidak lengkap, yang berhubungan dengan alasan lain dari gagalnya logika tradisional / tata bahasa.
Dalam pengembangan matematika modern, notasi Frege dirancang pertama yang cocok untuk membangun matematika formal. Notasi yang lebih presisi memungkinkan Russell untuk menemukan kelemahan dalam penalaran yang mereka dukung, yang dikenal sebagai paradoks Russell. Hal ini pada gilirannya mendorong perkembangan lebih lanjut dalam pemahaman kita tentang teori formal, khususnya, mereka menghasilkan axiomatization teori himpunan yang didukung oleh intuisi semantik yang merupakan iteratif konsepsi yang ditetapkan. Hal utama dari metode analisis logis formal adalah penggunaan model matematika untuk menjabarkan arti dari konsep yang dipertimbangkan; ini membawa unsur semantik ke latar depan dan mendorong pengakuan bahwa ketika kita ingin menggunakan bahasa secara tepat kita harus memilih arti yang tepat pula, dengan menganggap bahwa makna yang tepat yang bisa didapatkan dari preseden, dapat dilakukan.
Pada sisi lain, Kemerling, G., 2002, menyatakan bahwa William Hamilton menyarankan bahwa kuantifikasi predikat terkandung dalam proposisi kategoris tradisional mungkin mengizinkan interpretasi aljabar yang isinya merupakan pernyataan eksplisit dari identitas; pandangan ini didorong Augustus De Morgan yang mengusulkan ekspresi simbolis dari kopula sebagai hubungan logis murni, yang resmi mendapatkan fitur dalam konteks yang berbeda banyak. Dia mencatat bahwa Teorema De Morgan sama baiknya untuk himpunan irisan, himpunan gabungan, dan dalam logika dan disjungsi, De Morgan juga menjelajahi gagasan Laplace probabilitas sebagai derajat keyakinan rasional yang bisa jatuh antara kepastian sempurna dari kebenaran atau kepalsuan. Selanjutnya, Kemerling menjelaskan bahwa George Boole menyelesaikan transformasi ini dengan secara eksplisit dan menafsirkan logika kategoris dengan referensi himpunan dari hal-hal dimana logis / himpunan-teoritis / matematika relasi terus di antara kelas tersebut dapat dinyatakan setidaknya juga dalam "aljabar Boolean". Kemerling mencatat bahwa Leonhard Euler, dan John Venn menunjukkan, hubungan ini dapat direpresentasikan dalam diagram topografi, model fitur validitas yang formal;dan semua perkembangan ini mendorong para filsuf untuk memeriksa isomorfisma logika dan matematika lebih dekat.
Ia menjelaskan bahwa logika tradisional adalah istilah yang longgar untuk tradisi logis yang berasal dari Aristoteles dan banyak berubah sampai munculnya logika predikat modern di akhir abad kesembilan belas, dan asumsi mendasar dalam logika tradisional adalah bahwa proposisi terdiri dari dua istilah dan bahwa proses penalaran pada gilirannya dibangun dari proposisi; istilah adalah bagian dari mewakili sesuatu, tetapi yang tidak benar atau salah dalam dirinya sendiri; proposisi terdiri dari dua istilah, di mana satu istilah ditegaskan dan yang lainnya kebenaran atau kepalsuan; silogisme adalah kesimpulan yang salah satu proposisi berikut kebutuhan dari dua orang lain. Dalam logika , "proposisi" hanyalah sebuah bentuk bahasa: jenis kalimat tertentu, dalam subjek dan predikat digabungkan, sehingga untuk menyatakan sesuatu benar atau salah, itu bukan pikiran, atau entitas yang abstrak atau apapun; kata "propositio" berasal dari bahasa Latin, yang berarti premis pertama dari silogisme. Aristoteles menggunakan premis kata (protasis) sebagai kalimat yang menegaskan atau menyangkal satu hal lain sehingga premis juga merupakan bentuk kata-kata. Namun, dalam logika filsafat modern, sekarang berarti apa yang ditegaskan sebagai hasil dari mengucapkan kalimat, dan dianggap sebagai sesuatu yang aneh mental atau disengaja.
Kualitas proposisi adalah apakah itu positif atau negatif. Dengan demikian "setiap orang adalah fana" adalah ya, karena "fana" ditegaskan dari "manusia"; "Tidak ada pria abadi" adalah negatif, karena "abadi ditolak dari" manusia ", sedangkan, kuantitas proposisi adalah apakah itu universal atau tertentu.
Baca Bagian Kelima Masih Tentang Filsafat Matematika ====>> Filsafat Matematika Bagian Ke-5
Home »
Organisasi
» Filsafat Matematika Bagian Ke-4
Filsafat Matematika Bagian Ke-4
Written By Admin on Kamis, 24 Januari 2013 | Kamis, Januari 24, 2013
Category :
Organisasi