GammaPatria | Wilkins, DR, 2004, menjelaskan bahwa terdapat beberapa definisi tentang matematika yang berbeda-beda. Ahli logika Whitehead menyatakan bahwa matematika dalam arti yang paling luas adalah pengembangan semua jenis pengetahuan yang bersifat formal dan penalarannya bersifat deduktif. Boole berpendapat bahwa itu matematika adalah ide-ide tentang jumlah
dan kuantitas. Kant mengemukakan bahwa ilmu matematika merupakan contoh yang paling cemerlang tentang bagaimana akal murni berhasil bisa memperoleh kesuksesannya dengan bantuan pengalaman. Von Neumann percaya bahwa sebagian besar inspirasi matematika terbaik berasal dari pengalaman. Riemann menyatakan bahwa jika dia hanya memiliki teorema, maka ia bisa menemukan bukti cukup mudah. Kaplansky menyatakan bahwa saat yang paling menarik adalah bukan di mana sesuatu terbukti tapi di mana konsep baru ditemukan. Weyl menyatakan bahwa Tuhan ada karena matematika adalah konsisten dan iblis ada karena kita tidak dapat membuktikan matematika konsistensi ini. Hilbert menyimpulkan bahwa ilmu matematika adalah kesatuan yang konsisten, yaitu sebuah struktur yang tergantung pada vitalitas hubungan antara bagian-bagiannya, dan penemuan dalam matematika dibuat dengan penyederhanaan metode, menghilangnya prosedur lama yang telah kehilangan kegunaannya dan penyatuan kembali unsur-unsurnya untuk menemukan konsep baru.
Hempel, CG, 2001, menegaskan kembali apa yang telah dikemukakan oleh John Stuart Mill bahwa matematika itu sendiri merupakan ilmu empiris yang berbeda dari cabang lain seperti astronomi, fisika, kimia, dll, terutama dalam dua hal: materi pelajaran adalah lebih umum daripada apapun lainnya dari penelitian ilmiah, dan proposisi yang telah diuji dan dikonfirmasi ke tingkat yang lebih besar dibandingkan beberapa bagian yang paling mapan astronomi atau fisika. Dengan demikian, sejauh mana hukum-hukum matematika telah dibuktikan oleh pengalaman masa lalu umat manusia begitu luar biasa bahwa kita telah dibenarkan olh teorema matematika dalam bentuk kualitatif berbeda dari hipotesis baik dari cabang lain.
Hempel, CG, 2001, lebih lanjut menyatakan bahwa sekali istilah primitif dan dalil-dalil yang telah ditetapkan, seluruh teori sepenuhnya ditentukan. Dia menyimpulkan bahwa himpunaniap istilah dari teori matematika adalah didefinisikan dalam hal primitif, dan himpunaniap proposisi teori secara logis deducible dari postulat, adalah sepenuhnya tepat. Perlu juga untuk menentukan prinsip-prinsip logika yang digunakan dalam pembuktian proposisi matematika. Ia mengakui bahwa prinsip-prinsip dapat dinyatakan secara eksplisit ke dalam kalimat primitif atau dalil-dalil logika. Dengan menggabungkan analisis dari aspek sistem Peano, Hempel menerima tesis dari logicism bahwa Matematika adalah cabang dari logika karena semua konsep matematika, yaitu aritmatika, aljabar analisis, dan, dapat didefinisikan dalam empat konsep dari logika murni, dan semua teorema matematika dapat disimpulkan dari definisi tersebut melalui prinsip-prinsip logika. Bold, T., 2004, menyatakan bahwa komponen penting dari matematika mencakup konsep angka integer, pecahan, penambahan, perpecahan dan persamaan; di mana penambahan dan pembagian terhubung dengan studi proposisi matematika dan konsep bilangan bulat dan pecahan adalah elemen dari konsep-konsep matematika.
Baca Bagian Kedua Masih Tentang Filsafat Matematika ====>> Filsafat Matematika Bagian Ke-2
Home »
Organisasi
» Filsafat Matematika Bagian Ke-1
Filsafat Matematika Bagian Ke-1
Written By Admin on Kamis, 24 Januari 2013 | Kamis, Januari 24, 2013
Category :
Organisasi